Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Article in English | LILACS | ID: lil-621613

ABSTRACT

Introduction: Influenza viruses have been responsible for highly contagious acute respiratory illnesses with high mortality, mainly in the elderly, which encourages the development of new drugs for the treatment of human flu. The biotherapics are medicines prepared from biological products, which are not chemically defined. They are compounded following the homeopathic procedures indicated for infectious diseases with known etiology [1]. Aim: The purpose of the present study is to verify cellular alterations induced by a biotherapic prepared from the infectious influenza A virus. Methodology: This biotherapic was prepared for this study in the homeopathic potency of 30X according to the Brazilian Homeopathic Pharmacopeia [2]. The concentration of 10% was not cytotoxic to cells, as verified by neutral red assay. The cellular alterations observed in MDCK cells were analyzed by optical microscopy for the quantification of mitosis, nucleoli and lipid bodies. The mitochondrial activity was assessed by MTT assay and the phosphosfructokinase-1 (PFK-1) enzyme activity was analyzed on the MDCK cells treated for 5, 10 and 30 days. Macrophages J778.G8 were treated with this biotherapic to evaluate the immunostimulatory cytokine release. Results: The cellular alterations observed in MDCK cells were verified by optical microscopy. The number of lipid bodies present in MDCK cells stimulated for 10 days was significantly lower (p <0.05) when compared to controls. The biotherapic significantly increased (p <0.05) the number of mitosis and the mitochondrial activity of MDCK cells stimulated for 10 and 30 days. These changes were confirmed by a significant reduction (p <0.05) on the PFK-1 activity. These results suggest that the biotherapic was able to activate the Krebs cycle and pentosephosphate metabolism to the generation of amino acids and nucleotides, situations common to cells whose rate of mitosis is increased. The quantification of immunostimulatory cytokines by macrophages J774.G8 indicated that the tumor necrosis factor (TNF-?) production was higher (p <0.05) in the supernatant of the macrophages pre-treated with this biotherapic and infected with influenza virus, suggesting an activation of the macrophages by this biotherapic. Conclusion: This biotherapic is able to induce some cellular alterations, which show strong evidence that it might be a promising option for the human flu. New experiments are being developed to understand the mechanisms of action of this biotherapic.

2.
Ciênc. odontol. bras ; 11(01): 58-66, jan.-mar. 2008. ilus, tab
Article in Portuguese | LILACS, BBO | ID: lil-502323

ABSTRACT

A biocompatibilidade de uma membrana de pericárdio bovino foi avaliada em tecido subcutâneo de camundongos 3,7, 15, 30 e 60 dias após a implantação. Os componentes celulares da resposta inflamatória, a degradação da membranae as características do colágeno foram analisadas em cortes histológicos corados pela hematoxilina-eosina, tricrômico de Masson e Picro-Sírius, respectivamente. Para verificar seu potencial como carreador celular, osteoblastos humanos(hFOB1.19, ATCC) foram semeados sobre a membrana e mantidos em DMEM/F12 por 7 dias. Os resultados in vitro mostraram que os osteoblastos proliferaram em monocamada na superfície da membrana, mas sem penetrar em seu interior. A análise dos cortes histológicos demonstrou 3 dias após a implantação apenas a formação da rede de fibrina. Aos 7 dias, o material implantado estava circundado por células inflamatórias mononucleares, com pouca penetração celular no seu interior. Após 15 dias foi observado um intenso infiltrado inflamatório em contato e dentro do material,bem como sinais de degradação interna e externa. No período de 30 dias, o material, em processo bastante avançado de absorção, estava totalmente tomado por fibroblastos e macrófagos. Aos 60 dias pós-implantação, o material não foi maisdetectado em quaisquer dos animais e a tecido subcutâneo apresentava-se normal. Os cortes corados com Picro-Sírius e observados sob luz polarizada mostraram o remodelamento tecidual. Em conclusão, a membrana de pericárdio é bioabsorvívele biocompatível, porém, in vitro, não proporciona uma adequada matriz tridimensional para osteoblastos.


The biocompatibility of a pericardium membrane was evaluated in the subcutaneous tissue of mouse killed 3, 7, 15, 30 and 60 days post implantation. The cellular components of inflammatory infiltrate, the membrane degradation, and the collagen characteristic were analyzed in histological sections stained with hematoxilyn and eosin, Tricromic of Masson and Sirius Red, respectively. The potential features as a tissue engineering scaffold was tested in vitro using human osteoblasts (h.Fob 1.19, ATCC) seeded over the membrane and maintained for 7 days in DMEM/F12. We observed in vitro the monolayer proliferation of osteoblasts, but without penetrating in the membrane. The histological sections showed after 3 days of implantation only the presence of a fibrin net. At the 7-day period, mononuclear inflammatory cells were observed around the implant, but a few one were observed inside the membrane. After 15 days the inflammatory infiltrate was more intense than in the previous period and the cells were inside and in close contact to the material showing evident signs of internal and external degradation. The implant degradation was intense after 30 days and theresidual material was fulfilled of fibroblasts and macrophages. No signs of membrane were observed after 60 days in any animals and the subcutaneous tissue presented normal aspect. Sirius Red staining at polarized light had evidenced the tissue remodeling throughout the experimental periods. In conclusion, the pericardium membrane is bioabsorbable and biocompatible, but, in vitro, do not fulfill the requirements as a tridimensional scaffold to osteoblast.


Subject(s)
Animals , Collagen , Materials Testing , Pericardium , Subcutaneous Tissue
SELECTION OF CITATIONS
SEARCH DETAIL